Enterprise Risk Management Formula Book
2. Series expansions (for real-valued
functions)
[this page | pdf | back links]
2.1          Exponential function and natural
logarithm (log)
function
 


 
2.2          Binomial expansion

 
where  is the binomial coefficient.
 is the binomial coefficient.
 
If we substitute into the binomial expansion  ,
,
 and
 and  we
have (converges for any
 we
have (converges for any  if
 if  ):
):

 
A corollary is that:

 
2.3          Taylor series expansion
 
For one variable: if series converges (where  is the
 is the  ’th
derivative of
’th
derivative of  and
 and  ,
,  etc.):
 etc.):

 
For more than one variable: e.g. for two variables,
if series converges (where   etc.):
 etc.):
 


 
NAVIGATION LINKS
Contents | Prev | Next